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Lax Pair Representation for the KPI Equation

The KPI equation is given by

(ut +6uux + uxxx )x = 3uyy (1)

Dryuma (1974) found a Lax pair for (1) in the following form:

iψy + ψxx + uψ = 0 (2)

ψt +4ψxxx +6uψx +3ψ

[
ux − i

∫ x

−∞
uydx

′
]
= 0 (3)

where the KPI equation is the compatibility condition for (2) and (3).

Note: ψ is scaled by phase, i.e., ψ → ψe iλy to eliminate the spectral
parameter λ in the original Schrödinger equation.
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A Lump Solution

There are two important aspects of the KPI equation compared to the KdV
equation:

1 Soliton solutions of KdV are also solutions of KPI without depending on
y but they are linearly unstable (Kadomtsev and Petviashvili, 1970).

2 The KPI equation also admits lump solutions that decay algebraically
both in x and y (Bordag, Its, Manakov, Matveev and Zakharov, 1977,
Ablowitz and Satsuma, 1978).

One lump solution is given by

u(x , y , t) = 2∂2x ln
[
(x +X )2 +Y 2

]
(4)

where

X (y , t) = ay − 3(b2 − a2)t + x0,

Y 2(y , t) = b2(y +6at + y0)
2 + b−2, Y ≥ 0
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Solving KPI as an IVP

Zakharov and Manakov (1979) and Manakov (1981) developed an inverse
scattering formalism to solve (1):

• They considered (2) as a scattering problem and obtained a linear integral
equation of Gel’fand-Levitan-Marchenko type.

• However, the class of initial data was not specified, other than saying
u(x , y , t = 0) must vanish rapidly as x2 + y2 → ∞.

Manakov, Santini and Takhtajan (1980) showed that lumps solutions do not
evolve from initial data for which these methods are valid.

Question: Were lumps excluded by some limitation of Manakov’s method, or
are they unstable in some sense?
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Relation of A Lump Solution to Initial Data
Denote the initial data of (1) by u(x , y). Fourier transform of u(x , y) in x
variable is given by

û(m, y) =
∫

u(x , y)e−imxdx

so that

u(x , y) =
1

2π

∫
û(m, y)e imxdm

Assume that

U(∞) =
1

2π

∫ ∫
|û(m, y)|dmdy < ∞ (5)

Taking the Fourier transform of a lump solution in (4) at t = 0,

û(m, y) = 4π|m|e−|m|Y+imX (6)

so that

U(∞) = 4π (7)

*Scattering solutions in the direct scattering problem are defined iteratively if

U(∞) < 1 (8)
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Analogy with Modified KdV Equation

The modified KdV equation is given by

vt +6v2vx + vxxx = 0

Then every soliton satisfies ∫
|v |dx = π

The Gel’fand-Levitan equation can be solved iteratively (Ablowitz, Kaup,
Newell and Segur, 1974) if the initial data satisfies∫

|v |< 0.904

So, the solution evolving from this initial data does not contain solitons.
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More Restrictions on Initial Data
First, assume that for each fixed t, u and its x derivatives vanish as x → −∞.
Then, integrating (1) in x ,

ut +6uux + uxxx ∼ 3∂2y

∫ x

−∞
udx ′

Observe that ut also vanishes as x → −∞. Then, assume that u and its x
derivatives vanish as x → +∞ for each fixed t. So,

ut ∼ 3∂2y

∫
udx ′

as x → +∞. If we require ut to vanish as x → +∞, we need∫
u(x , y , t)dx = A(t)y +B(t) (9)

Finally, assume that

U =
∫ ∫

|u(x , y)|dxdy < ∞ (10)
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More Restrictions on Initial Data (ct’d)

At t = 0, integrating (9) in y over [−R ,R] for some R > 0,∫∫
u(x , y)dxdy = 2B(0)R

Then using (10), we obtain 2|B(0)|R < ∞ for any R > 0. So, B(0) = 0.
Similarly, at t = 0, integrating (9) in y over [0,R] gives A(0) = 0. Thus,∫

u(x , y)dx = 0 (11)

The method discussed requires the restriction (11) on the initial data in
addition to (5).

Samir Donmazov University of Kentucky

Inverse Scattering for KPI equation



Introduction Forward Scattering Time-Evolution of Scattering Data Inverse Scattering

Left and Right Scattering Solutions
Since u(x , y) → 0 as y → ±∞, (2) has an asymptotic solution

ψ(x , y ; k) ∼ e ikx−ik2y as y → ±∞

Let ψ(x , y ; k) = e ikx−ik2yµ(x , y ; k), so that (2) becomes

iµy + µxx +2ikµx + uµ = 0 (12)

Let ψL and ψR be two solutions of (2) such that ψL(x , y ; k) ∼ e ikx−ik2y as

y → −∞ and ψR(x , y ; k) ∼ e ikx−ik2y as y → +∞.

Now, let

µL(x , y ; k) = 1+
i

2π

∫ y

−∞

∫ ∫
e iϕu(x ′ , y ′)µL(x

′ , y ′; k) dm dx ′dy ′

µR(x , y ; k) = 1− i

2π

∫ ∞

y

∫ ∫
e iϕu(x ′ , y ′)µL(x

′ , y ′; k) dm dx ′dy ′ (13)

where

ϕ = m(x − x ′)−m(m+2k)(y − y ′)

so that µL → 1 as y → −∞ and µR → 1 as y → +∞.
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Left and Right Scattering Solutions (ct’d)
Write µL = 1+Tu(µL) where,

Tu(µL)(x , y ; k) =
∫ y

∞

∫ [
i

2π

∫
e iϕu(x ′ , y ′)dm

]
µL(x

′ , y ′; k)dx ′dy ′

For u with sufficiently small norm, the resolvent operator [I −Tu]
−1 exists and

it has a convergent Neuman series. Thus, µL = (I −Tu)
−11 = ∑∞

n=0 T
n
u 1.

Let µL,n = T n
u 1, so that

µL(x , y ; k) = 1+
∞

∑
n=1

µL,n(x , y ; k)

Substituting this into (13),

µL,1(x , y ; k) =
i

2π

∫ y

−∞

∫ ∫
e iϕu(x ′ , y ′) dm dx ′ dy ′

and for any n ≥ 1

µL,n+1(x , y ; k) =
i

2π

∫ y

−∞

∫ ∫
e iϕu(x ′ , y ′)µL,n(x

′ , y ′; k) dm dx ′ dy ′
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Left and Right Scattering Solutions (ct’d)

Assuming that µL,n(x , y ; k) has a Fourier transform in x , µL,n(m, y ; k),

µ̂L,1(x , y ; k) = i
∫ y

−∞
e−im(m+2k)(y−y ′)û(m, y ′)dy ′

and for any n ≥ 1

µ̂L,n+1(x , y ; k) =
i

2π

∫ y

−∞
e−im(m+2k)(y−y ′)(u ∗ µL,n)(m, y ′; k)dy ′ (14)

Let

U(y) =
1

2π

∫ y

−∞

∫
|û(m, y)| dm dy ′

Then, by (14),

1

2π

∫
|µ̂L,1(m, y ; k)|dm ≤ U(y) (15)
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Left and Right Scattering Solutions (ct’d)

Hence, it follows from (14) and (15) that

1

2π

∫
|µ̂L,n(m, y ; k)|dm ≤ U(y)n

n!

Note that |µL,n(x , y ; k)|≤ 1

2π

∫
|µ̂L,n(m, y , k)|dm. Then,

|µL(x , y ; k)|≤ 1+
∞

∑
n=1

U(y)n

n!
= eU(y) < eU(∞)

Similarly,

|µR(x , y ; k)|< eU(∞)

Thus, if U(∞) < ∞, then (13) has a unique solution for all x , y , k ∈ R.
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Scattering Kernel S
Define a scattering kernel as

S(k , k +m) = − i

2π

∫∫
e−imx ′+im(m+2k)y ′

u(x ′ , y ′)µR(x
′ , y ′; k)dx ′dy ′ (16)

We wish to show that

µR(x , y ; k) = µL(x , y ; k) +
∫

S(k , k +m)µL(x , y ; k +m)e imx−im(m+2k)ydm

or

ψR(x , y ; k) = ψL(x , y ; k) +
∫

S(k , l)ψL(x , y ; l)dl (17)

Rewrite (13) as

µR ,L = 1+GR ,L ∗ (uµR ,L)

where the Green’s functions are

GR ,L(x , y ; k) = ∓ i

2π
θ(±y)

∫
e imx−im(m+2k)ydm
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Scattering Kernel S (ct’d)
Note that

[GR − GL](x , y ; k) = − i

2π

∫
e imx−im(m+2k)ydm (18)

Let ∆µ = µR − µL. So, ∆µ = GR ∗ (uµR)− GL ∗ (uµL). Then, rewrite ∆µ as

∆µ = (GR − GL) ∗ (uµR) +GL ∗ (u(∆µ)) (19)

Substituting (18) into (19),

∆µ(x , y ; k) =
∫

S(k , k +m)e imx−im(m+2k)ydm+ [GL ∗ (u∆µ)](x , y ; k) (20)

For U(∞) < 1, the resolvent operator [I −GL ∗ (u·)]−1 exists. So, we can solve
(20) for ∆µ,

∆µ(x , y ; k) =
∫

S(k , k +m){[I − GL ∗ (u·)]−1e imx−im(m+2k)y}dm (21)

with

[I − GL ∗ (u·)]−1 =
∞

∑
n=0

[GL ∗ (u·)]n

Samir Donmazov University of Kentucky

Inverse Scattering for KPI equation



Introduction Forward Scattering Time-Evolution of Scattering Data Inverse Scattering

Scattering Kernel S (ct’d)

Comparing (21) to (17), it suffices to show that for any n ∈ Z+,

[GL ∗ (u·)]ne imx−im(m+2k)y = µL,n(x , y ; k +m)e imx−im(m+2k)y (22)

so that

[I − G∗(u·)]−1e imx−im(m+2k)y ] = µL(x , y ; k +m)e imx−im(m+2k)y

Note that the zero-th order term in (22) is e imx−im(m+2k)y .

We calculate the first-order term to be[
GL ∗

(
ue im·−im(m+2k)·

)]
(x , y ; k) = e imx−im(m+2k)yµL,1(x , y ; k +m)

By induction, we obtain (22), so that we prove the jump relation (17).
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Comments on Left and Right Scattering Solutions

To solve the inverse scattering problem, we require that

1 the scattering kernel evolves linearly in time.

2 The scattering solutions involved are analytic in k in appropriate
half-planes.

However, µL and µR generally are not analytic in k. The integrals in (13) are
defined only for real k if u(x , y) is real because y − y ′ is unbounded and m
takes both negative and positive values.

So, µL and µR are not appropriate scattering solutions for the inverse problem
if the initial data is real.
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Alternative Set of Scattering Solutions

Define at t = 0,

µ↑(x , y ; k) = 1− i

2π

∫ ∞

y

∫ ∞

0

∫
e iϕu(x ′ , y ′)µ↑(x ′ , y ′; k) dx ′ dm dy ′

+
i

2π

∫ y

−∞

∫ 0

−∞

∫
e iϕu(x ′ , y ′)µ↑(x ′ , y ′; k) dx ′ dm dy ′

µ↓(x , y ; k) = 1− i

2π

∫ ∞

y

∫ 0

−∞

∫
e iϕu(x ′ , y ′)µ↓(x ′ , y ′; k) dx ′ dm dy ′

+
i

2π

∫ y

−∞

∫ ∞

0

∫
e iϕu(x ′ , y ′)µ↓(x ′ , y ′; k) dx ′ dm dy ′ (23)

Note that µ↑ can be extended to Im(k) > 0 and µ↓ to Im(k) < 0.
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Upper and Lower Scattering Solutions

Let us solve (23) iteratively similar to what we did before.

Let µ↑ = 1+ ∑∞
n=1 µ↑

n.
Then by (23),

µ↑
1(x , y ; k) =

i

2π

∫ y

−∞

∫ 0

−∞

∫
e iϕu(x ′ , y ′) dx ′ dm dy ′

− i

2π

∫ ∞

y

∫ ∞

0

∫
e iϕu(x ′ , y ′) dx ′ dm dy ′

and for any n ≥ 1,

µ↑
n+1(x , y ; k) =

i

2π

∫ y

−∞

∫ 0

−∞

∫
e iϕu(x ′ , y ′)µ↑

n(x
′ , y ′; k) dx ′ dm dy ′

− i

2π

∫ ∞

y

∫ ∞

0

∫
e iϕu(x ′ , y ′)µ↑

n(x
′ , y ′; k) dx ′ dm dy ′
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Upper and Lower Scattering Solutions (ct’d)
Taking the Fourier transform of µ↑

n(x , y ; k) in x ,

µ̂↑
1(m, y ; k) = i

∫
e−i(m+2k)(y−y ′)û(m, y ′)

·
[
θ(y − y ′)θ(−m)− θ(−(y − y ′))θ(m))

]
dy ′

µ̂↑
n+1(m, y ; k) =

i

2π

∫
e−i(m+2k)(y−y ′)(m, y ′)(u ∗ µ↑

n)(m, y ′; k)

·
[
θ(y − y ′)θ(−m)− θ(−(y − y ′))θ(m))

]
dy ′ (24)

Then, by (24),

1

2π

∫
|µ̂↑

1(m, y ; k)|dm ≤ 1

2π

[ ∫ y

−∞

∫ 0

−∞
|û(m, y ′)| dm dy ′

+
∫ ∞

y

∫ ∞

0
|û(m, y ′)| dm dy ′

]
(25)

Note that since u(x , y) is real, û(−m, y) = û(m, y).
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Upper and Lower Scattering Solutions (ct’d)
Taking m to −m in the first term on the right hand side of (25),

1

2π

∫
|µ̂↑

1(m, y ; k)|dm ≤ 1

2π

∫ ∫ ∞

0
|û(m, y ′)| dm dy ′ =

1

2
U(∞) (26)

Hence, it follows from (24) and (26) that

1

2π

∫
|µ̂↑

n(m, y ; k)|dm ≤ 1

2
U(∞)n (27)

Thus, if U(∞) < 1, then (23) has a unique solution for all x , y , k ∈ R, which is
uniformly bounded by

|µ↑(x , y ; k)|≤ 1+
1

2

∞

∑
n=1

U(∞)n =
2−U(∞)

2(1−U(∞))

Differentiating µ↑(x , y ; k) in (23) with respect to k, we observe that the
nonhomogeneous term is defined for Im(k) > 0 because if m(y − y ′) < 0, then

|2im(y − y ′)e−2ikm(y−y ′)|≤ 1

Im(k)e

So, µ↑(x , y ; k) is analytic in Im(k) > 0.
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Scattering Solutions for One Lump

Consider one lump solution (4) at t = 0 so that U(∞) < 1 does not hold.
Ablowitz and Fokas showed that at t = 0 the scattering solutions are given by

µ(x , y ; k±) =
c±

x + Z
+

d±
x + Z ∗

which satisfies (13) and vanishes as x2 + y2 → ∞, where

Z = X (y) + iY (y), c± = 1∓ b2(y + y0)− i

bY
, d± = c∓ , 2k± = −a± ib

One can show that µ(x , y ; k±) are homogeneous solutions of (23), so (23)
cannot be solved iteratively if the initial data is one lump, i.e., (4) at t = 0.
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Asymptotic Behavior of Upper Scattering Solution

Integrating by parts in y ′, one can show that as Im(k) → ∞,

µ↑(x , y ; k) ∼ 1+
1

4πk

∫
û(m, y)

m
dm+ o(|k |−1) (28)

Note that (28) is valid if û(0, y) = 0, which is the same as (11).
Also, note that if we can recover µ↑ from the scattering data in the inverse
problem, then u can be obtained from µ↑ using (28).

Samir Donmazov University of Kentucky

Inverse Scattering for KPI equation



Introduction Forward Scattering Time-Evolution of Scattering Data Inverse Scattering

Asymptotic Behavior of Upper Scattering Solution (ct’d)

Alternatively, (28) can be obtained by (12).
Let µ = 1+ ν, and rewrite (12) as

iνy + νxx +2ikνx + uν + u = 0

Note that as Im(k) → ∞, either ν → 0 or ν = 0. The second gives trivial
solution u = 0.
If ν and its derivatives vanish as Im(k) → 0, then we obtain

2ikνx + u ∼ 0 (29)

Taking the Fourier transform of (29), then solving for v gives the leading term
in (28).
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Jump Relation Between Upper and Lower Scattering
Solutions

We wish to show that

µ↑(x , y ; k)− µ↓(x , y ; k) =
∫

F (k , l)µ↓(x , y ; l)e i(l−k)x−i(l2−k2)ydl

or

ψ↑(x , y ; k) = ψ↓(x , y ; k) +
∫

F (k , l)ψ↓(x , y ; l)dl (30)

Assume that F (k , ·) ∈ L1(R).
Rewrite (23) as

µ↑,↓ = 1+G ↑,↓ ∗ (uµ↑,↓)

where the Green’s functions are

G ↑,↓(x , y ; k) =
i

2π

∫
[θ(y)θ(∓m)− θ(−y)θ(±)] e imx−im(m+2k)ydm
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Jump Relation Between Upper and Lower Scattering
Solutions (ct’d)

Note that

[G ↑ − G ↓](x , y ; k) =
i

2π

∫
sgn(m)e imx−im(m+2k)ydm (31)

Let ∆µ = µ↑ − µ↓. So, ∆µ = G ↑ ∗ (uµ↑)− G ↓ ∗ (uµ↓). Then, rewrite ∆µ as

∆µ = (G ↑ − G ↓) ∗ (uµ↑) +G ↓ ∗ (u(∆µ)) (32)

Substituting (31) into (32) and (30) into both sides of (32), we obtain∫
F (k , l)µ↓(x , y ; l)e i [(l−k)x−(l2−k2)y ]dl

=
∫

T (k , l)e i(l−k)x−i(l2−k2)ydl+∫∫
G ↓(x − x ′ , y − y ′; k)u(x ′ , y ′)

∫
F (k , l)µ↓(x ′ , y ′; l)e i(l−k)x ′−i(l2−k2)y ′

dldx ′dy ′

(33)
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Jump Relation Between Upper and Lower Scattering
Solutions (ct’d)

where

T (k , k +m) = − i

2π
sgn(m)

∫∫
e−imx ′+im(m+2k)y ′

u(x ′ , y ′)µ↑(x ′ , y ′; k)dx ′dy ′

(34)

Rewriting (23) for µ↓(x , y ; l), multiplying by F (k , l)e i [(l−k)x−(l2−k2)y ] and
itegrating in l ,∫

F (k , l)µ↓(x , y ; l)e i(l−k)x−i(l2−k2)ydl

=
∫

F (k , l)e i(l−k)x−i(l2−k2)ydl

+
∫ ∫ ∫

G ↑(x − x ′ , y − y ′; l)u(x ′ , y ′)µ↓(x ′ , y ′; l)dx ′dy ′F (k , l)e i(l−k)x−i(l2−k2)ydl

(35)
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Jump Relation Between Upper and Lower Scattering
Solutions (ct’d)

Subtracting (35) from (33) and taking the Fourier transform,

F (k , l)−T (k , l) +
∫ l

−∞
T1(p, l)F (k , p)dp = 0, if k > l

F (k , l)−T (k , l)−
∫ ∞

l
T1(p, l)F (k , p)dp = 0, if k < l (36)

where

T1(k , k +m) =
i

2π
sgn(m)

∫∫
e−imx ′+im(m+2k)y ′

u(x ′ , y ′)µ↓(x ′ , y ′; k)dx ′dy ′

(37)
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Jump Relation Between Upper and Lower Scattering
Solutions (ct’d)

Let l = k +m in (34) and rewrite as

T (k , l) = − i

2π
sgn(l − k)

[ ∫∫
e−i(l−k)x ′+i(l2−k2)y ′

u(x ′ , y ′)dx ′dy ′

+
∫∫

e−i(l−k)x ′+i(l2−k2)y ′
u(x ′ , y ′)

∞

∑
n=1

µ↑
n(x

′ , y ′)dx ′dy ′
]

= − i

2π
sgn(l − k)

[ ∫
e i(l

2−k2)y ′
û(l − k , y ′)dy ′

+
1

2π

∫∫
e i(l

2−k2)y ′
û(m′ , y ′)

∞

∑
n=1

µ̂↑(l − k −m′ , y ′)dy ′dm′
]
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Jump Relation Between Upper and Lower Scattering
Solutions (ct’d)

Now, note that since we assumed U(∞) < 1, then

∥T (k , ·)∥L1(R) ≤
1

2π

∫∫
|û(l − k , y ′)|dy ′dl

+
1

2π

∫∫
|û(m′ , y ′)|

[ ∞

∑
n=1

1

2π

∫
|µ̂↑

n(l − k −m′)|dl
]
dm′dy ′

≤ U(∞)

[
1+

1

2

∞

∑
n=1

U(∞)n
]

by (5) and (27)

≤ U(∞)(2−U(∞))

2(1−U(∞))
< ∞

Similarly, ∥T1(k , ·)∥L1(R) ≤
U(∞)(2−U(∞))

2(1−U(∞))
< ∞.
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Jump Relation Between Upper and Lower Scattering
Solutions (ct’d)

However, we show that we need ∥T1(k , ·)∥L1(R) < 1, i.e., U(∞) < 2−
√
2, to

have F (k , ·) ∈ L1(R), so that F (k , l) is defined by (36) for each fixed k.

Assume that ∥T1(k , ·)∥L1(R) < 1 and we have that T (k , ·) ∈ L1(R). We wish

to show that F (k , ·) ∈ L1(R).

For k > l , rewrite (36) as

F (k , l)−T (k , l) + S(F )(k , l) = 0

where

S(F )(k , l) =
∫ l

−∞
T1(p, l)F (k , p)dp
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Jump Relation Between Upper and Lower Scattering
Solutions (ct’d)

It suffices to show that

∥S(F )(k , ·)∥L1(−∞,k) < ∥F (k , ·)∥L1(−∞,k)

Note that

∥S(F )(k , ·)∥L1(−∞,k) ≤
∫ k

−∞

∫ l

−∞
|T1(p, l)||F (k , p)| dp dl

≤
∫ k

−∞
|F (k , p)|

∫ k

p
|T1(p, l)| dl dp

≤ ∥T1(p.·)∥L1(−∞,k)∥F∥L1(−∞,k)

≤ ∥F∥L1(−∞,k)

This shows that F (k , ·) ∈ L1(−∞, k).
Similarly, for k < l , we obtain F (k , ·) ∈ L1(k , ∞), so that F (k , ·) ∈ L1(R).
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Jump Relation Between Upper and Lower Scattering
Solutions (ct’d)

Finally, if (10), u ∈ L1(R2) with ∥u∥L1(R2) = U also holds, then

|T (k , l)|≤ 1

2π

2−U(∞)

2(1−U(∞))
U and |T1(k , l)|≤ 1

2π

2−U(∞)

2(1−U(∞))
U

Thus, F (k , l) is defined pointwise by (36).

Therefore, given F (k , l), defined by (36), ψ↑ and ψ↓ are related by (30).

Hence, the direct scattering problem at t = 0 is complete.
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Relation between Scattering Kernels S and T

Note that if u(x , y) is real and ψ1 and ψ2 are any two solutions of (2), then

i∂y [ψ1ψ2] + ∂x [(ψ1)xψ2 − ψ1(ψ2)x ] = 0 (38)

Observe that
∫

ψ1ψ2dx is y independent if the boundary terms vanish after
integrating (38) first in y , then in x .
However, the boundary terms do not vanish for any of ψR ,ψL, ψ↑, ψ↓.

Note that as y → ∞, ψR(x , y ; l) ∼ e ilx−il2y and by (23)

ψ↑(x , y ; k) ∼ e ikx−iky2

[
1+

i

2π

∫ ∫ 0

−∞

∫
e iϕu(x ′ , y ′)µ↑(x ′ , y ′; k)dx ′ dm dy ′

]
Then, using the Dominated Convergence Theorem, as y → ∞,∫ [

ψ↑(x , y ; k)ψR(x , y ; k)−e i(k−l)x−i(k2−l2)y

]
dx

→ 2πθ(k − l)T (k , l) (39)
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Relation between Scattering Kernels S and T (ct’d)

Similarly, as y → −∞,∫ [
ψ↑(x , y ; k)ψL(x , y ; k)− e i(k−l)x−i(k2−l2)y

]
dx → 2πθ(l − k)T (k , l) (40)

Segur asserts that if we compute
∫

ψ↑(x , y ; k)
[
ψR(x , y ; l)− ψL(x , y ; l)

]
dx

using (17), we can obtain the desired relation between T and S ,

T (k , l) sgn(k − l) = S(l , k) +
∫ ∞

0
S(l , k +m)T (k , k +m) (41)
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Time Evolution of Scattering Kernel S

The time evolution of ψ(x , y , t; k) is given by

Mkψ = [∂t +4∂3x +6u∂x +3ux − 3i(∂−1
x uy ) + α(k)]ψ = 0

Recall that as y → ±∞, ψ(x , y ; k) ∼ e ikx−ik2y , and u with its derivatives
vanish. So,

Mkψ ∼ [∂t +4∂3x + α(k)]e ikx−ik2y as y → ±∞

gives α(k) = 4ik3.

Consider the time-dependent version of (17)

ψR(x , y , t; k) = ψL(x , y , t; k) +
∫

S(k , l , t)ψL(x , y , t; l)dl (42)
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Time Evolution of Scattering Kernel S (ct’d)
Note that MkψR = MkψL = 0. So, applying Mk to both sides of (42) and
taking the limit as y → −∞, we obtain

0 =
∫

Mk [S(k , l , t)ψL(x , y , t; l)]dl

∼
∫
[∂t +4∂3x + α(k)][S(k , l , t)e ilx−il2y ]dl

=
∫ [

[(∂t + α(k))S(k , l , t)]e ilx−il2y + S(k , l , t)[(∂t +4∂3x )e
ilx−il2y ]

]
dl

=
∫ [

∂tS(k , l , t) + 4i(k3 − l3)S(k , l , t)
]
e ilx−il2ydl (43)

Let g(k , l , t) = [∂tS(k , l , t) + 4i(k3 − l3)S(k , l , t)]e−il2y . Multiplying both
sides of (43) by a test function φ ∈ S(R) and integrating in x ,

0 =
∫

g(k , l , t)φ̂(l)dl for any φ ∈ S(R)

So, g(k , l , t) = 0, i.e., ∂tS(k , l , t) + 4i(k3 − l3)S(k , l , t) = 0. Thus,

S(k , l , t) = S(k , l)e4i(l
3−k3)t (44)
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Time Evolution of Scattering Kernels T , T1 and F (ct’d)

Since S∗(k , l , t) evolves in accordance with (44), then

T (k , l , t) = T (k , l)e4i(l
3−k3)t (45)

satisfies the time-dependent version of (41).
Similarly,

T1(k , l , t) = T1(k , l)e4i(l
3−k3)t (46)

Then,

F (k , l , t) = F (k , l)e4i(l
3−k3)t (47)

satisfies the time-dependent version of (36).

Thus, all of the scattering kernels S ,T ,T1, F evolve linearly in time.
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Recovering a Solution of KPI via Inverse Scattering
Comments on Solving for u(x , y , t) via Inverse Scattering:

• F (k , l , t) is given in terms of the initial data u(x , y) via (36) and (47).

• u(x , y , t) can be recovered from µ↑(x , y , t) via (28) or (12).

• The main problem is to recover µ↑(x , y , t) in terms of F (k , l , t) via (30).

A formal procedure for solving (30) (Manakov, 1981) assumes triangular
representation given by

ψ↓(x , y ; k) = e ikx−ik2y +
∫ x

−∞
K(x , z , y)e ikz−ik2ydz (48)

If (48) exists, then (30) can be reduced to a linear integral equation of
Gel’fand-Levitan-Marchenko type.

Finally, if such K exists, substituting (48) into (2), we obtain

u(x , y) = −2
∂K(x , x , y)

∂x

so that we do not need (28) to recover the solution.
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Questions on Justification of Manakov’s Procedure

• Does triangular representation in (48) exit?
Gel’fand and Levitan (1951) showed explicitely that their kernel
corresponding to K in (48) exits using the theory of hyperbolic pdes but
no such proof provided by Manakov.

• Are further restrictions on the initial data required to assure a unique
solution of the Gel’fand-Levitan type equation?

Author deferred further analysis of the inverse problem to a later paper, which
presumably was not published, in which there is no need for the initial data to
be small, so that lump solutions are not excluded a priori.
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